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The results of classical shell theory (the theory based on the Kirchhoff~-
Love hypothesis) are compared with results obtained from the asymptotic inte-
gration of the three-dimensional equations of the theory of elasticity, and

a study 1s made of how these and other arrors which enter the basic relations
of classical theory influence the final result.

The 1nvestigation deals with the case when there are no boundary supports
as, for example, in the case of a shell whose shape 1s similar to a closed
sphere. The only assumptions made are that the variations in the curvatures
of the middle surface are sufficiently smooth, that the effective length of
the shell 1s not overly great and that the sought state of stress is formally
obtainable by means of the membrane theory for any self-equilibrated load
distribution whose components are sufficiently differentiable.

It 1s generally assumed [1] that the errors of the classical theory are
of the order of n, (nondimensional thickness). This assumption does not
take into account the index of variation ¢; for ¢ « 0, the above assumption
is genrally true, although some counterexamples can be cited even in this
case. It has been shown that, if the basic relations contain the errors that
are characteristic of classical theory, then for sufficiently long cylindri-
cal [2, 3] or helicoidal [4, 5] shells , the errors may increase to the order
of magnitude of unity.

in the present study, error estimates are gilven taking into account the
influence of the index of variation ¢ ; 1t is shown that errors may be
essentially reduced to quantities of the order of #3~2%, and the pertinent
stress~-strain relations are derived.

1. Consider the system of orthogonal coordinated o, 8 and y 1n three-
dimensional space, where o and g are dimensional parameters along the
lines of curvature of the middle surface and y 1s the distance along the
normal to thils surface.

The shell under investigation in this coordinate system 1s bounded by the
surfaces y =4 » , where the half-thickness h 1is assumed to be constant.
The Lamé coefficlients are represented by 1Ta and IYﬁ, while the principal
redii of curvature of the middle surface given by R, and Rj . These
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Errors of and corrections to classical shell theory 833

guantities are interrelated by Formulas

Ho=A(1+7), HB=B(1+%B-)

where 4 and B are the coefficients of the first quadratic form of the
middle surface.

Subsequent proofs will also make use of Equation
o0H
o
25— o8 (1-}— R ) (aB)
which follows from the Codazzi equations. Here, as well as hereinafter, the
symbol (ag) implies that another equation may be obtained by interchanging
o With B and 4 with 5 .

We introduce the constant R , which represents some characteristic radius
of curvature of the middle surface; the ondimensionalized radil of curva-
ture 7, and rg, half-thickness h, and coordinates & , n , { are then
ziven by Formulas

h Ra i_— _i 9 = R~ __a_.
= =hy, & =T @, R 3a k P (aB), R Fl4 =h,™! 13 (1.1)

(The symbol (ag) also applies to the interchange of £ with n ).
In (1.1), » 18 a constant defined by Equation
tek (1.2)
where ¢ 18 a nonnegative rational number (the assumption that ¢ 1s ratio-
nal does not restrict generality, since the characteristic radius &® which
was used in the definition of »n, is only restricted to be within a certain
range, but otherwise arbitrary). Now introduce another constant parameter
A defined by Equations
AP =k, =plq (p and ¢ are integers) (1.3)

The three-dimensional equations of elasticity will now be written in the
coordinate system described above. Taking into account the transformations
in the preceding discussion, these equations take the following form:

equilibrium equations

_ - £\ 9% - AR 1.4
}»PQB(1+)»q¥)6—§+quA(1+xq7:)_ﬁ_+ (1.4)

+AB(1+N"~,C—)(1+?»‘Q C) s RS (14 =) (ea—sn) +

+2MR (+7~' )raa-l—?»"AB[( + )+"’ 3€e:|‘rav= (a8

KP-QB( __{_7\'— ,LB) aaY—l—xp_qA(i-*—}v-q Ea) an +

-+ '}\,—qﬂg—f<1 + A )Ta*r+ A'_qR ( + A1 =+ )TBY
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— ABA [(1 4 «;%)-“—“ + (1427 S—) f—ﬂ Sie)
FAB(14a b (1 an by Ty
+ae4B [ (147 -f.—)-;‘-g+(1+w.§g-)$~] 6y =0

stress-strain relations

AL = At [0y — v (60 + o))
TV T d et i) = (1477 5) e v )]
R () S () S
—(1+ z“q;g)%%g-uﬁ-—(iqu x‘”é)]%%ug
=2(1+)(1+ A ;i—)(i + x*qri- Tap (1.5)

%[(1 + A ,—‘)% + M"Q-}% “x'Q?] -

=204 (1427 E)ryy e

The foregoing system of equations must now be integrated subject to the
conditions on the swurfaces vy = + 1 , 1.6. { w3+ 1 . We will assume thaet
these surfaces carry some arbitrary load distributions. Then

Oy = 1/2@'{"“1/2’”: Tay =120, + YaMg (aB) tor { =41 (1.6)

The quantities appearing in the preceding equations are related to the
respective surface-applied force and moment components r, ¥, 2z snd Z, 7
by the formulas used in classical theory (the signs are determined as in £31)

1
SSTRATI
1 i h?
*zzgv“km(“ﬁ;—%“‘g;)—?“m@v
F——hM,  E=—hM, (1.7)

2. A8 1in Section 6 of the paper [6], we will seek a solution to the sys-
tem if equations (1.%) and (1.5) in the form of asymptotic series In

S =MP AL (ap), Ty =M TN p),  wy = AP IANG (o
8 s L]
6y =M Y1 A%, Tap = AP D475, uy = AT 3 (2.1)
8 -8

8
(for the time being, p 1s arbitrary)

Substituting (2.1) into (1.3) and (1.5) and following the usual procedure
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of equating coefficients of like powers of )\ , we obtaln the following set
of systems of equations for the determination of the coefficlents in the
series expansion:

ast®) 61:(‘2 otls) B

2 04 B 36‘3“”
Bog +4 5y + 4B 5 T 4 R (o8P — o) ZRggf‘s— +g — -+
4 075? R A 2 Ay o
LT T AR (5 ) S+ an( )+t Y

R 94 2 61:(3 2q) 3
— G(s-p—q)) + ZC bl _B_ T(s P-q) + AB < 4 s —ac———— + ; EB 1:‘3“2‘1)) =0 (ap)

(8 4l® as'®) arle-a+2p) arle-a+2p)
Og g Sy Tay By }
—AB( + - )+AB 3C {BT-LAT + (2.2)
(8—q)
9B - 04 o +p) _ (s-q) (s—q) 4 4 a_il__
+ R Tyt 4+ Rpgvg P — ¢ 'a(" +of ) + 8B 7o+ 5, ) Tt
(s-2a+2) Hris-2a+2D)
11 ( B 97§ A 0% )
= (s-q) DL S Tl - SU—
+ 4B (54 ) 40 4 T )t
B 94 AB a7

2 1 AB
— —_ (8- (8-30)
+R§( aa Tor o + 7 a8 r;ﬁq+”’)+ s F 8 =0

ul® 4 0 poaa ul®
E duy - - y _(_ e (s-p _*_) -
3 6; —‘V(G‘(: Q)_I_G(as Q))+G(: 20), R \4 3¢ +AB 8 ug + )=

4

= o —vaff) — vol~? 4. = (¥ D —voffD — w82y (4

(® Q)
E iiuL_ + 1 6u ._Ii_a_Au(s—p) - R 9B u(s—p)+
R\B dn A 6& T ABdB “a ABdy B

£
.

(s-q) (s—q)
1 9uq _,__C-_i-(mi___C_'zﬁﬁ.u(a-p—q) _g__f_’.z. e p—q))
B oq rg A 0§ ABAB rg "= Boar,

i
=2<1+v)[ +;( a) 2:’5‘”+,€,Br&’§“’]

E (3u(s) 1 au(S—q+2p) ¢ 3,4:-!1) 1 (s_q))
E\a T 3% T, & rte /T

— £ (-
=2(1+v) (T‘(:Y 29+2p) + a -CE:.{SII+2P))

Here, as well as hereinafter, quantities with negative superscripts are
taken equal to zero.
3. Investigation of system (2.2) will begin with the case where the

index of varlation of the sought state of stress 1s zero, i.e. where we may
set

p=0, g=1, &=h1, (3.1)
Equations (2.2) relate to quantities of order e ; quantities of lower
orders are consldered to be known. Integration with respect to ¢ 1is
easlly accomplished in this system. Performing the integration and taking
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note of (3.1), we obtain a solution of the form

(8) o 3] P
P = Z CEP; i (aB) (3.2)
k=0
Here P() represents a typical coefficlent of the series expansions in

(2.1), and n =s for off, of, 1'%, ul, uf’ ana u'®,wnile ror the remain-
ing cases n = 8 + 1 ,

The dependence of the unknown guantities on { is explicitly shown in
{3.2). The quantities bearing the additional subscript » are functlons of
¢ and n only.

Substituting (3.2) into (2.2) and requiring, in the resultant equations,
that the coefficient of each power of ¢ vanish, we obtain a system of par-
tial differential equations {with respect to £ and n ) for the quantities
bearing the additional subscripts.

5‘\) (S) aT&B(%) )
B - f L A—" 4R 6a (6,15 — <eJ)+zR 3B Tl FAB K+ DT, =
i r ar ‘k_ ) i
=T, [ aB R (%“};_1% — o)+ kABru‘j,kl)] —_
&
tr, 9 (sk 11}
i - -2
- [B —g T2R ag T80, - kABT,YS j
2 1y N +
—AB <;‘: + rB)fogfs 1%.) 75 a: 1;';)1 (2B) (3.3)

(s} (s} . {s-1) {s~1}
Sak Sg arm,,‘ 3‘5«1,1: aB (s~1)_1__ R dA t(s—-1)+

ABL“;:"I‘ B—U‘+1)5«,k+1J =B £ + 4 an J;'Ra—a"rafk 63 8v. %

1 1 ~ . 1 1 -
+ AB(K + ;'B') o — [ (352 -+ Sh i)k (i + rB> G(fkl)]
—2)
BT i a0l RoB R oA
Z. i phl (s-2) k44 G.\8-2)
+ <r8 8¢, + ro on ) r, oo Tav, k1 + 88 BYJC—I + e+ ) Sy k-1
E s . ~ ~
T kuy(,;i — (Ga(,ﬁk—l{ + 5g (s 1)) e G‘Y(S]{ 2)

(S~1) (s-1)

E ‘ E i1 3u w, k

2 kw8 L R )

R ®ai =" ( ag T T T M ) + . '
2 (0 + F ) e

uts

E 1 au’¢ I 1{ aA '~( k e (S) (s}
F(A ot T ABIR ugn . )"“a.k""%kJr
1 . _
. (Sa(SA—l) - "%f);wll)) - sz}?/c Y 51(2' 21) (aB)
E a(sli 1 9ug% R o4 R 6B
pumil = e e u(s} e e u(S) +
R an T A4 6 T AB33 “e kT ABdx Y.k
ET1 16““%11) R OB o), L idu‘“‘) R 04 (s—l))}w
“‘E‘_‘r"( — 4B ba “8.k 1)“‘“ rB(A oF AB 33 Yak-1)| =

L B Py L)
=2(1+v) {Tag},c + (;; 4 ,.ﬁ) T + Furg Tad kg
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In these equatlons

14 {
Sar =00 =Tl =u = uP =u, =0, 18 1 <0 or 1O or >

Toal =Tl =060'=0, 1 1<C0 or 1<0 or t>1+1 (3.4)

To Equations (3.3), we must adjoin (1.6), expressing the conditions on
the exterior and interior surfaces. Assume that Q,, Uz Q,, M, Mg, and m,
on these surfaces, are independent of A, ; then we may set p = 0 in (2.1),
and (2.1) will be satisfiled, if

o V=21Q, —Ym, 7, =210Q, + 1M, (s B)
GY(j)=Ta$)=“p(yj)=0 i>0 for [ =11,
Substitution of (3.2) into these equations ylelds
wh="My e o=t =10 e 0,9 =0Q,
=0 @), o =0 (3.5)
WOt nh=0  en o P+ef=0

r r r r

2 TU-(Y],)Zi =0 (o) )y Ta(i),zi—i—l =0 @8), s, =0, 2 c’Y(.]z)i+1 =0 G>1
i=0 i=0 i=0 i=0

where r 1s the integral part of the quantity &7 + % .

As will be seen later on, the combination of equations in (3.3) and (3.5)
is sufficient to permit the sequential determination of the coefficilents of
the series in (2.1) and (3.2).

4, Set % = 0 1in (3.3). Then, taking into account (3.4), we obtain

s, ot i 0B 84 _ (9 _
B ——;—E:O—— + 4 '%%(l + R o (Ga‘(.f)) - Gﬁfg)) + 2R a8 Tapo +ABR=0  (ap)
Q] ()
Saw0 | %0 __pe—0
r r
3 8
E /11 a”a(.f)) R 04 (s) T uY58)>_6 (8) +vs () _ P(S) («B) (4.1)
R (—Z 9t + 4B op 8.0 Fy %0 A0
(s) ] (s) R 9B
E (1 Ougy 1 OUgg R 04 o (s)) _ () _
i (_'E g~ T A o8 AB 93 =0 T AB oa PO 2(1+v) Tap =0
where
2 1 —
Ra(s) = Ta(Ys,)l ('r_ + —r;) Ta(Ys,ol) (aB)
a

a1 0%0Y R 4B _ e
(3) 1 ay,0 BY,0 0B o (s-1)
R, = 6y, A7 o + B on + AB 0a Tavo T+

R (s-1) 1 1 (s-1)
+ =45 %TBYS.O + ('—‘ + _> Gv,0

r, rg

P — — w5, 57 (4.2)

(when k = O, the third and fourth equations in (3.3) are reduced to identi-
ties, in virtue of (3.4)).

If we consider R,(5) Ry® R.,) and P to be known, then (4.1) com-
prises a system of six partial differential equations (with respect to £
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and n) in the six unkmowns G,'y, 0%, Taih, Ud'y, ug'y and u,), defining

the membrane portlon of the unkmown state of stress, i.e. the portion in
which the stresses 04, Ty, O are constant over the thickness.

For & = 0 and s =1, the quantities R, ) Ry R, ) and P6)| may
be expressed in terms of the components of the external loading by making
use of (3.4), (3.5) and (%.2). Thus,

R =150, (g, RO =10, PO=0

A (4.3)
W=—=/= 3 2\ 8 w—__y
RO (LT PO

w_ AL My 1M | R By Ry (g )]
Ry —7[7 I3 T+ an ~+ a5 o Me + 43 o (ra'l‘rﬁ)m

For s > 1, the quantities Ro”, Rs®, R, ana P® will also be known
(1f all lower order approximations have been constructed), but the expres-
sions for these quantities will include, in addition to the components of
external loading, those coefficlents in the series expansions (2.1) whose
indices are less than s .

The quantities o, \¥, T.5'), o {7, ue, (¥, up, () and u, (¥ 1in the series

expansions (2.1) and (3.2) define the pure moment portion of the state of

stress, 1.e. the part in which the stresses &,, Tqop and Gg have a linear
antisymmetric variation over the shell thickness. To determine these quan-
tities, it 1s sufficlent to set # = 1 in the last four equations of (3.3).

We obtain

E -1 -1 (s-2
R Uy, is) = — (541’ gs ) + GB,AES )) —l— Oy, Qs )
(s-1) (s-1) (s-1)
E (s) _ E (1 9uy g Ug,0 _ Hayn 9 {4 (s-2)
-Fuayl —'—7{*<7 % + . " >+2(1+V)7a1,0
(s) (8
E (1 Ouy 'y R 04 () | v ,i\__
a5t oyt + )=
1 - — 35— v -
=6q, ¥ —vog, ¥ + —— (o, B yap, §7Y) —voy, PV — — G, G2 ap)
o4
du, ¥ dug 04 B
AT R R T
1 3 4B 93 AB da
E(1 (10¢™ R 3B (s—1)) RN -
3 7;(”3‘ 5 A oa 480 o \a T aE
R 44 . (s~1) . ) (s) 1 1 (5--1)
_ AB_%uayos ):|=Z(1+V)[Taﬂ’1+<7:+—r;>faﬁ.0J

Whence, considering all lower order approximations up to and including

the (a—1)th to be known, differentiation and algebraic manlpulation yleld

] (s)
the expressions for u, 'y, ua’(;)‘ us'D, 6., 0u'y and Ty . For k=1,

the first two eguations in (3.3) yleld (also by means of simple operations)

., 1o, and G,5), which are needed for the determination of R, R,
s &) » *
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RY(S) and P(S)_

5. We will confine ourselves to the first two terms in the seriles expan-
sions (2.1). Then, in conformance with (3.2), the formulas for the stresses
and displacements are

=k R(G (0) + R G, (1)+ HCGQ(])) (aB)

Tas = b R o+ evulo + 17,0
oy = 700 + in‘&,’o F LD+ ) 4, (5.1)
Oy = GY,(g) 5*{ %) +C (GY,(O) + —“GY.(H) 2 ;26Y.(1)

ug=nh7 R(uafg)+ﬁua_‘}))+-§§ua,‘})) @B), u,=h"1 R+ u% %Cu,,,ul))

The quantities in the right-hand sides of these equations may be deter-
mined by means of the equations obtained in Section 4. An approximate method
for the analysis of shells is thus constructed. The resulte obtained will
now be expressed in terms of classical shell theory.

The stress resultants, moment resultants and displacement components for
the middle surface may be written as

+h
T,=T"+ —hﬂ;Tl(D = S Ou (1 + —1—;—) dy (aB)
“h B
+h
Si= 8,9 4 L5® = S Tap (1 + ) dr
B
~h
+h
Sy =8 ‘°’+ S"”——gfaa (1 —I—TzT—)d"r
+h ’-h
G =— S m(i T R—’;) dy (B) (5.2)
“h
+h +!1
o=\ tor(1+4-)dr, Ho=— | m(i + 7 )dr
-h -h *
u =y + % = RK! (u, @ _|_—u <1>) (aB)
W= fu® = — R, 9+ 4, %)

Here Love's notation has been used [7]. Substituting (5.1) into (5.2),

we obtain

T = 92Rs, D @k, S =2RtE,, S =—2RTg o 1)
. i=0,
u® = Rh7la, ) @,  w® = — Rh™u. (5-3)
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(0)
, 2h2 C
Gy= — o (ca, o+ —) (28)

3
Substitution of (5.3) into (4.1) yields zeroth and first order approxima-
tion equations in terms of the tangential stress resultants and displacements
(these quantities are designated, respectively, by the indices 0 and 1 ).
Utilizing these results and returning from nondimensionsl to dimensional
quantities by means of Formulas (1.1), we obtain

(in all formulas ¢ = 0, 1)

e A R L DT

(1) i) B . I N ; . .
B_a%___ A4 aSTTi_ + B (Tl(i)__ 12(1)) ' g (b (i) S2( )) + ZAB]i’l(l):O
35,1 aT,™ U oy M _
St A +aa(51 S, Hﬂa#(r2 7,9 4 24BRs™ =0

Tltl) Tgm ) _
—2RM =0 (5.5)
R, Ry, N
7,9 T,V = 2Ehe,? + 2P0 1,% 1, = 2Fhe,” + 2PV
201+ w8 = —2(14+v) 85, = 2Ere" (5.6)
i i i (i)
@ 1 ou® 1 04 .. wld p_ Lo 1 9B, w
A i A R, & =5 53 B a Ry
. A o u® B 4 oW -
M=pgma Tamw (©-7)

R,®, Rg®, R, © and P are given by Formulas (4.3). From these it
follows that, when ¢ = 0 , Equations (5.5) will coincide with the equations
of equilibrium of membrane theory if, in the latter, the components of the
exterlor surface loading are taken, respectively, as

Qay Qs — Q4 (5.8)
when P =0, (5.6) and (5.7) with i = 0, coincide with stress-strain
relations for the tangential stress resultants.

When { = 1 , the meaning of Equations (5.5) to (5.7) is the same as
before, but the components of the exterior surface loading are now given,
respectively, in accordance with (4.3) as

(ri + rL) M, (ri + 72;) M, (5.9)
A B (L e

In addition, when i == 1, the quantity P() does not become zero in the
first two stress-strain relations in (5.6).

Relations (4.4), which are used in the determination of those quantities
in (5.1) which bear the additional indez' 1, also have a simple interpretation.
By setting s = 1 1in the first two equations in (4.4) and taking into account
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(5.3), we obtain
1 v (© ©) ® 1 @ L@
uy,”— —Z—ET(Tl +T5"), ua1=—R(A ' +—§a—) (aB)

The remaining two equations in (4.4) may, with the aid of (5.%), (5.3)
and (1.1), be transformed into the form

2Eh3 1 1 v 1
_— " —_—_——— 0y — —
G 3(1—v9) {”ULW” (Ha Hp)el 1—v(Ra+
v )
+ 7o) 0+ &)} e (5.10)
2Eh3 ol® 2ER3 »®
Hi = 501 (T—zna)’ Hy = — 501 ('_21?3)
Here, x,, g &and «rt pertain to the curvatures which, as in [3], are
glven by N __‘___S_aTl _ 1 94
V=" "4 %x  AB '55‘ T2 (k) (5.11)
_ 1 an 1
1 aw(O) 2@
Tl = <A aa K) (28)
1 0v® 1 a4
—_ (0 (aB)
01 =7 %a A8 8 ¢ :

6., The classical equations of the shell theory contain, in addition to
terms of the order A, terms of order ns, l.e. the equations are formally
(but only formally) constructed with an accuracy of order hs®. In order to
bring into correspondence the accuracy of classical theory and that of the
currently proposed method and therefrom to proceed to a comparison of results,
use will be made of an lterative method of integrating the equations of shell
theory which will enable us to check on the attainment of the necessary accu-
racy.

Neglect 1n all equations of equilibrium of classical shell theory the
terms representing moments of thier derivatives. Then, making use of the
last two formulas in (1.7), the fourth and fifth equilibrium equations

yield (¥) N, = —hM,, Ny, = —hM, (6.1)
Utlllizing these formulas to eliminate the transverse stress resultants

from the first three equations of equilibrium, we obtain the equilibrium

equations of classlcal membrane theory in which the actual components of

exterior surface loading r , ¥ and Z are replaced by the effective com-
ponents

X'=X+hf1§i ), Z=Z— s [aa(BMB)-{— (AMQ)] (6.2)

*) The well known equations of shell theory are not written out here. The
results given below may be proved by utilizing the equilibrium equations
(12.6), part I of monograph [3]. The fifth of these equations has to be
corrected by changing the sign in front of F from minus to plus.
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The remalning components of classical theory can be made to coincide with
relations (5.6), (5.7), (5.10) and (5.11) by eliminating the superscripts in
the latter and setting Pt = 0.

The equations of the shell theory which have been simplified by neglect-
ing moments may be integrated step by step in the following manner: the first,
second, third and sixth equations of equilibrium yield the tangential stress
resultants (Ty, Ty, Sy, S,) ; the tangential strain components ¢, €, and
w may be determined by means of (5.6); the displacement components vy, v
and p may then be determined from (5.7); the curvature components i, xg,
T are obtained from (5.11); the moments @,, Gz, #; and J, are determined
from (5.10), and the transverse stress resultants »; and ¥, are found from
Formulas (6.1). The above method represents a modification (by taking into
account moment loads on the surface) of the method described in chapter 5 of
monograph [3]. It can be considered as an approximation obtained by an
iterative procedure. A second approximation can be constructed by including
in the equilibrium equations the quantities @¢,, G, F» and g, obtalned from
the initial approximation, etc. However, in order to obtain results with
the required accuracy, i.e. to an accuracy of the order of hy compared with
unity, the initial approximation is sufficient.

Note . The described iterative method is not always applicable., It
can not be used, for example, to find edge effects or the state of stress in
shells whose effective length is sufficiently great. The exclusion of such
cases from consideration and the pertinent limitations have been discussed
in. the introduction.

The complete state of stress constructed in this manner will consist of
a membrane state of stress produced by tangential forees and a pure moment
state of stress produces by moments. The first of these corresponds o that
portion of the state of stress discussed in Section 5 which 1s produced by
the stresses

R b6, 9 4 0.8, REE 0+ Taflo, RIS + 05 (6.3)
The components of the surface loading which produce the state of stress
(6.3) may be obtained by combining the components of (5.8) with the compo-
nents of (5.9) multiplied by hs. With the aid of (1.7), it is easily shown
that this procedure ylelds components with the same accuracy as (6.2). This
means that the membrane portions of the states of stress under discussion
differ from the state of stress in (6.3) only to the extent that in obtaln-
ing (6.3) the dtress-strain relations (5.6) are not homogeneous (in terms of
powers of h, compared to unity). Complete coincidence is obtained 1if, in
the classical theory, the stress-strain relations for I, and T, are taken

in the form
T, — vI'y = 2Ehe, + vhm, Ty — vTy = 2Ehe, + vhm (6.4)

This correction corresponds to taking into account compression of the
shell in the normal direction.
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t§ ot e . The nonhomogeneity in relations (6.4) is easily eliminated by
setting

vh . vh
Ti=T¢*+—m, Ty=Tp~+ y—m
Then the formulas in (6.2) are replaced by the following
” ’ hv om MB hv om
X=X+ i =X+t g + a0 0a («F)

Z”::Z—il:i(BM)—l-i(AM )]_’_L(L _1_)
AB|7a (PMa) + 35 (AMo) [+ 15 (g, t &, )™

The pure moment part of the state of stress obtained here corresponds to
the state of stress (Lo, @, {Tap,,®, Lop, ;(¥) in Section 5. Coincidence
within the bounds of the assumed accuracy willl be complete if the relations
for the moments are taken in the form (5.10).

From the preceding comparison it follows that, in order to solve the prob-
lem formulated in the introduction, we may propose a corrected classical
theory the error in which, for ¢ = 0 , will be of the order »4® in compari-
son with unity. For this, it 1s necessary: first, to determine the compo-
nents Y, ¥ and Z of the exterlor surface loading by Formulas (1.7),
retaining only the first two terms 1n the right-hand sides, 1.e. taking into
account changes of area scale 1n golng from the exterlor or interior surface
to the middle surface; second, instead of the actual components of the sur-
face loading, to use the effective components Y’, ¥’ and Z2’, l.e. to take
into account moments arising from the transference of exterlior tangential
forces to the middle surface; third, to make use of the nonhomogeneous rela-
tions (6.4) or replace x’, Y’ and 2’ by effective components x”, y" and
Z* , 1.,e, to take into account compression arising from the transfer of
exterlor normal forces to the middle surface; fourth, to take stress-strain
relations for the moment resultants in the form (5.10).

T. We will now proceed to study the influence of the index of variation
on the errors in determining the state of stress based on classical theory.

We will assume, in (2.2), that 0 < ¢ < 3 (here, as in other asymptotic
studies, the case where { ;a‘/m must be examined separately), and for defi-
niteness, assume 1/, < ¢<1/3 . This leads to the following inequalities

0<p<g—2p<2p<q—p<qg<qg+p<29—2p (1.9)

which will be used in proving subsequent éssertions.

Finally, assume tyat the quantities in the right hand sides of (1.6) are
independent of », and that 0Y 1s not identically zero. Then we must set
p = O 1in the series expansions (2.1), and, in order to satisfy the boundary
conditions (1.6), it 1s necessary that
61{(8) =+ 1/2Q7(8) - 1/2m(8), 1;15:) =41, Qa(s) + I/ZMB(&) (aB) for L= 1
where (7.2)

QY(O' = Q‘Y! m® = m, Qa(p) = Qa (aB), Mx(p) =M, (B (73}
QY(’) =m® =0 for 50, - Qa(s) — Mp(a) — QB(S) _ Ma(s) =0 for. s==p
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The state of stress satisfying all the stated conditions will be referred
to as the state of stress (! >0, @, ==0).

if, in (2.2), the index s satisfies the inequality e < ¢ — 2p , then
upon taking into account (7.1) and eliminating terms with negative indices
it will be found that, when g = 0, p = 0 and g = 1, (2.,2) will contain
only terms with indices (s) and (s — p). This means that, for g < g — 2p,
the form of the solution of Equations (2.2) will be the same as that for

=0, P=e0 and g =1, 1,e, 1t will be given by Equations (3.2) in which
we set g = 0 .,

In particular, this implies that
=1, {s) —{—@T“ aB)  for s<q—2p
and hence, by virtue of the boundary conditions (7.2) and (7.3),
'ra(f)zrﬁ(s)zo for s==p, s< q—2p

If the index € satisfies the inequalities ¢ — r)p s < 2q — 2p, then
(2.2) will contain only terms with the indices (s), {; (s — q - 2p),
{(s—qg+p), (s—q) and (s—p—q) , namely those and only those tex‘ms which
remain in (2.2) when g = 1, p = 0 and = 1 , Thus, the form of the solu-
tion is, in this case, given gy the Formulas in (3.2) with g = 1 .

When s> 2¢ — 2p then (2.2) willl contain terms which do not appear there
when p = 0 and ¢ = 1 until s> 2. Correspondingly, we must take g > 1
in (3.2) for such values of g .

From the foregoing aiscussion 1t follows that if only the first 25 —2p
approximations of the state of stress (12> 0, Q, == 0) are to be constructed,
i.e. 1f we take g w 29 — 2p , then the solutioh will be of the form

a '1‘22" () 29 2110— 20—9p—1
= -8 8 -8 s s 3 - 5
x[ Z Me R M e Y ate,w] (af)
S==y—2p §—=1 2 _|
q—2p--1 2¢—-2p—1 20—2p—1
Teg = Al ) ) -5z (5) S
O P D X
§=(—2p s=q—2p
4—2p—1 g—2p~—1 2—2p—1 7.4
3P (s) e v . s N L e (s (7.4)
i RRTRES T
5=0 5=0 s=y—2p
20—2p—1 2¢—8p—1 :
| 1 (s) 1 w2 ) -5 (s) .
P AT e Y a0 e
§==q—32p $==g—2PD
q—2p—1 ( y—2p—1 ( 2q—2p—1 ) 20—~2p-—1 (
_ SJ s ~8. (s) 4 = ~s o sy
sy= 3 A% M A N A Y sy
8=0 80 $=q-—2p &= —2p
20-—2p—1
5 -8 . (8)
TS 2 A ole
s=q—3p
_q—2p—1 2r1-2¥—1 ( 2q~-23~1 *
. — ~5 ., (%) -8 ) e \ -8 8 25
ua“}“q pl 2 A Yoo + 2. Uz 7% >_| A ua,1‘| ()
8—0 § =q—2p §=q--2p
q—2p—1 27—-2n—1 20—2n—1

it N S ey e S )
8=

8-=q—2p 5=q—2p
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To obtain the state of stress (f >0, Qy 3= 0) with errors of the onder
A2a+2p = ph_2-2 (here an d hereafter the change from 1A to h, is obtained
by means of (1.2) and (1.3)),all components in (7.4) must be obtained. This
may be accomplished by using enly those terms in (2.2) which are used in the
computation of the zeroth and first approximations of the state of stress
when the index of variation 1s zero., Thls leads to :

Conclusion 7.1 . The classical shell theory with the correc-
tions formulated at the end of Section 6 enables to determine the state of
stress (f > 0, Qy == 0) with errors of the order h,2-%.

From (5.3) and (5.4), we can obtain two relations (the first relation is
approximate, only the first term having been retained)

(0)
Ti=2Rs,f,  G=—22 (0 + Z20) (7.5)
B .
which are based on {5.1) and are applicable to states of stress with zero
index of variation. For states of stress (£ >0, Q,=3=0) , (5.1) must be
Peplaced by (7.4%), so that
T, ~2 © 2h2 2t (g-2p) | Oad
1= 2Rs4,y, G1z—T(h* Ca,1 +"—B) (7.6)
The formulas for the remaining stress resultants and moment resultants
may be obtained in a similar manner.

For t < § , the major portion of the stresses will be given by the tan-
gential stress resultants. These will be of the order of hy~! for both
states of stress., -For ¢t = 0 and ¢ > 0 , the moments provide corrections
of the order n,' and nu'~%%, respectively. As one might expect, the impor-
tance of the moments increases as ¢ 1increases. However, it may be seen
from the second equations in (7.5) and (7.6) that this behavior is only due
to the first tezms in the parentheses, The order of magnitude of the second
terms does not change as ¢ 1increases, and consequently, since the terms
containing tangential deformations in (5.10) affect only the second terms,
the proper formulation is obtained.

Conclusion T7.2. An improper cholce of stress-strain relations
for the moment resultants leads to a state of stress (t > 0, O, = O) with
errors of order hy' regardless of the value of the index of variation ¢ .

Corrections introduced by the proper evaluation of the load components
and supplementary terms in (6.4) take effect when & reaches a value such
that the terms within braces in (2.2) do not vanish. In view of (7.2) and
(7.3), the foregoing condition will occur when 8 = ¢ — p .

Conclusion 7.3 . Errors arising from the improper (in terms
of order hy compared to unity) evaluation of exterior loading lead to errors
of the order AP = A 1-! in the determination of the state of stress
(t >0, Qy5=0) (here, the errors in the final results are greater than
those in the basic equations).
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8. 1In Section 7, it was assumed that Q, == 0. When (Q, =m= 0, 1i.e.
when the shell is carrying only tangential surface loads, then, in order to
satlsfy the conditions (1.6), we must set p = —p 1in (2.1).

Whereupon (7.2) remains unchanged, and (7.3) is replaced by
Q ©) _ =0 (0) . O Qam) — Qa (@8), MQ(O) — Ma (28)
Q (s) — m Q 8) __ Q (s) M (s) M (s) -0 for 50

All qonsiderations of Section 7 apply, but the terms within braces in the
second equation in (2.2) will now become nonzero when 8 = ¢ — 2p . This
means that conclusions 7.1 and 7.2 remain in effect, but conclusion 7.3 must
be replaced by the following.

Conclusion 8.1 . Errors arising from the improper (in terms
of order h, compared to unity) evaluation of exterilor loading lead to errors
of the order A% = h*1_2t in the determination of the state of stress
(t>0, Ov=0)

Thus, in the cases under consideration the largest errors in classical
theory arise from inaccuracies in operations connected with the applied load,
1.e. 1naccuracles which can be eliminated essentially without any difficulty.

9. The stress-strain relations obtained here guarantee (when the other
previously discussed conditions are satisfled) maximum accvracy in the solu-
tion of a certain class of problems described in the introduction. However,
these relations are not free of formal contradictions. They do not satisfy
the sixth equation of equilibrium, and do not satisfy the necessary condi-
tions for the applicability of the reciprocal theorem (cf. [3], Part I, Sec-
tion 27). These inconsistencies may be explained in the fact that the formu-
lation is valid only within accuracy of order hny, compared to unity. They
may be eliminated without changing the order of accuracy by including in the
stress-strain expressions for the tangential stress resultanté terms con-
taining bending strain components. This results in the following formulas:

L e s
S _113—\) 3(f$v) <7}_— 7?%) (T I;) )Hl'— 3%?1_) (r*—?mﬁ:)
G = — %{M -+ V“z—(ji';—jig> €1 — 1—_\1—\,('[% + —;7};’) ( 81“{—32)}

(the formulas for 7., Ss, Hs and @5, being similar, are not shown; 1n
addition, a term containing m has been left out in the formula for 7Ti).

The stress-strain relations (9.1) are different from those obtained by
Lur'e [8) (only the formulas for #,, H,, S and S, coincide). For the
class of problems considered here, Formulas (9.1) will certainly yield greater
accuracy. For many other problems, both (9.1) and Lur'e's formulas will
apparently yield adequate accuracy, but this question requires further exa-
mination.
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Stress-strain relations (5.6), (5.7), (5.10) and (5.11) correspond to the
following assumptions.

1. The stresses 0,4, Tap, Op and the displacement components u,, Ug, Uy
vary across the shell thickmess in the following manner:

Oy = Ga, 0+ Y0a,1  (2B), Tap = Tap, 0 T TTa8, 1 (9.2)
Uy = U —1TT1 (xB), Uy = —W—19

2. The stress-strain relations of three-dimensional theory of elastilcity
may be given in the form

Eeyq = 04 — VGg (2B}, Eeag =2 (1 + ‘V) Tap

9.3)
Eeyy=0 (a8, Eeyy =—"(0a+ 0p)

In determining e.,, €pg &nd 2,3, it is necessary to retain terms con-
taining the zeroth and first powers of vy , while in the determination of
€ay, €g,y @nd e€yy only terms which are independent of y must be retained.

By expressing €y,, €ap, - - - in terms of u, v, w, Y15 Vs and o 1in the
manner described above, then utilizing (9.2) and (9.3) as well as Formulas
(5.2) to determine the stress resultants and moment resultants to an accuracy
of order h4®, we obtain the homogeneous (for P® = (). strzas-strain rela-
tions in Section 5. It can be seen, incidentally, that these relations are
distinguished from the relations of Lur'e by the fact that here e,, 1s not
taken equal to zero,
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