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The results of classlcal shell theory (the theory based on the Klrchhoff- 
Love hypotheels) are compared with results obtained from the asymptotic lnte- 
gratlon of the three-dimensional equatlolrs of the theory of elasticity, and 
a study Is made of how these and other arrors which enter the basic relations 
of classical theory Influence the final result. 

The investigation deals with the case when there are no boundary supports 
as, for example, In the case of a shell whose shape Is similar to a closed 
sphere. The only assumptions made are that the variations in the curvatures 
of the middle surface are Sufficiently smooth, that the effective length of 
the shell IS not overly great and that the sought State of stress Is formally 
obtainable by means of the membrane theory for any self-equilibrated load 
distribution whose components are sufficiently differentiable. 

It Is generally assumed [l] that the errors of the classical theory are 
of the order of h+ (nondlmenslonal thlctiess). This assumption does not 
take Into account the Index of variation t: fort = 0 . the above aSSumK)tlOn 
1s genrally true, although some counterexamples can beecIted even In this 
case. It has been shown that, If the basic relations contain the errors that 
are characteristic of classical theory, 
cal [2. 31 or helicoidal t-4. 51 shells . 

then for sufficiently long cyllndrl- 
_ _- 

of magnitude of unity. 
. -~ 

in the present study, error estimates 
influence of the Index of variation t ; 
essentially reduced to quantities of the 
stress-strain relations are derived. 

the errors may Increase Eo the order 

1. Consider the system of orthogonal 

dimensional space, where c and 8 are 

lines of curvature of the middle surface 

normal to this surface. 

are given taking Into account the 
It Is shown that errors may be 
order of h$-“, and the pertinent 

coordinated a, B and y in three- 

dimensional parameters along the 

and Y Is the distance along the 

The shell under Investigation in this coordinate system Is bounded by the 

surfaces v -f h, where the half-thlcheas h Is assumed to be constant. 

The Lame coefficients are represented by H, and HP, while the principal 

r&l1 of curvature of the middle surface given by R, and RB . These 
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quantities are Interrelated by Formulas 

H,=A(l$&), 
o! 

.,=q+gJ 
where A and B are the coefficients of the first quadratic form of the 

middle surface. 

Subsequent proofs will also make use of Equation 

aH, aA 
- = ,(I+&) 
w (a& 

which follows from the Codazzl equations. Here, as well as hereinafter, the 

symbol (ae) implies that another equation may be obtained by lnterchanglng 

(r with 6 and A with B . 

We introduce the constant R , which represents some characteristic radius 

of curvature of the middle surface; the ondlmenslonallzed radii of curva- 

ture r’a and Q, half-thickness h, and coordinates S , rl , C am then 

given by Formulae 

h h -= 
R *, !!?=r a a 

R a (a~), R aa = k aE (NJ)* R & =h,-'+ (1.1) 

(The symbol (ae) also applies to the Interchange of c; with 51 ). 

In (l.l), k la a constant defined by Equation 

h,-’ E k (4.2) 
where t ia a nonnegative rational number (the assumption that t Is ratlo- 

nal does not restrict generality, since the characteristic radius R which 

was used In the definition of h, Is only restricted to be within a certain 

range, but otherwise arbitrary) . Now introduce another constant paramster 
X defined by Equations 

hp = k, t=p/4 (p and (I are Integers) (1.3) 

The three-dimensional equations of elasticity will now be written In the 
coordinate system described above. Taking Into account the traneiformatlons 

in the preceding discussion, these equations take the following form: 

equilibrium equations 

),P-G’B (I + 1-q %_ ?$ + AP-qA 1 + h-Q 5 ( “4 + ) (1.4) 
r, arl 

+ AB (1 + h-’ f) (1 + h-’ $) ‘2 + h-qR g (I + h-9 $) to, _ 6Bp) + 
(1 

+ 2h-qR -$+ (I+ A-' $) zaB + h-‘AB [ ($ + $) + h-Q p: 
3 

G?, = O (W 

&P--qB 1 + X-Q 5 
( 

ar,y 
‘6 ac ) 

+ hP-qA (1 + h-9 p af. + 
(L ) 

-t_ h-qR g (1 + I.-’ +) ray + A-‘R $- (1 + h-q 1 zBy - 

‘0 1 



- Amk--9 [( 1 + a-q .‘J._ r~)~+(l+hq+p]+ (1.4) 
cont. 

+AB(1+P_8)(l+h-d&+ 
(1 

+ h-@AI3 
E 

(1 + h-q Jj-) ; + (1 + h-q+ 
) I 

f 6, = 0 
St 

8trerr8-strain relations 

The rPorego%ng syrrtem of equation8 mu8t now be integrated subjmt to the 
ooaditiona onthe surSaw3 y -+ h, I.e. t-+1. We will assum that 
these sucfaees oamy mm arbitrary load distributions. Then 

c+ = ztllsQv-“Izm zay = str: ‘/aQa + ‘/aJbf~ (a@) for {= & i (1.6) 

The quantitierr appears in the preceding equationa &re related to thf 
respeative surfme-applied fOrOe and moment wnqponents X, Y, Z and E, F 

by the formulas used in olasbioal theory (the slgna are determined a8 inC31) 

0, Aa In Seotlon 6 of the paper C61, we will eeek a eolution to the ays- 
tam ir eqmts.onm (1.4) 8nd (1.5) in the form OS asymptotlo series In x 

6 

(for the tine being, p Is arbitrary) 

mtituta (2.1) into (1.4) and (1.5) aad foXlowIng the ueualpwoedure 
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of equating coefficients of like powers of X , we obtain the following set 
of systems of equations for the determination of the coefficients In the 
series expansion: 

a#-P+aP) 

-AB(f$+‘;)+AB$+{B a& +A 

a,jls;q+W-4 

a,, }+ (2.2) 

aB (s-P+*) -+Rp,y + R aA z(8-Q+P) _ f AB 
ap BY r,rp (rp) + ,b”-q’ ,,.cAB(&+$)T+ 

+ AB ( $ + $) at-q) + 5 ($ aT’;;2*’ + .$ a”$+2pi ) + 

+ 25 rg cpq)= 0 

E a$) 
--= 
R aC 

_ v (Q-q’ + @I)) + Jyq), 

c aup) 
+< a6 

Here, as well as hereinafter, quantities with negative superscripts are 
taken equal to zero. 

3. Investigation of system (2.2) will begin with the case where the 

Index of variation of the sought state of stress Is zero, i.e. where we may 

set 
P 0, = q = I, h = h-1, (3.9 

Equations (2.2) relate to Quantities of order e ; quantities of lower 

orders are conzidered to be known. Integration with respect to C Is 
easily accomplished ln this system. Performing the integration and taking 
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note of (3-l), we obtain a solution of the form 

Pj(‘) - Ifi ckPjis) (a@) (3.2) 

Here Pjp’ 
hk(j 

repressnts a typical coefficient of the series expansions In 

(2.11, and n - s for c$', c$', Z$, ix:', u:' and @,while for the remaln- 

ing cases 73 I 8 + 1 , 

The dependence of the unknown quantities on C is explicitly shown In 

(3.2). The quantities bearing the additional subscript k are functions of 

C and q only. 

Subatitutlng (3.2) Into (2.2) and requiring, in the resultant equations, 
that the coefficient of each power of C vanish, we obtain a system of par- 
tial differential equations (with respect to 5 and q ) for the quantities 
bearing the additional subscripts. 

(3.3) 

u (s-1) 
a,k-1 k 

__ + py - +, 
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In these equations 

5h”, = a (I) - r (1) - u (1) = u 

PJ - Gf3.f - a,1 
(f) _ 

p,1 -Q=o, If t<o or l<O or t>i 

T&'+ (0-c 
PY,l_ (t)=O lf t<O or l<O or t>l+l Y,I - ’ (3.4) 

To Equations (3.3), we must adjoin (1.6), express1 
the exterior and Interior surfaces. Assume that Q,, 
on these surfaces, are Independent of h+ ; 

then we 

and (2.1) will be satlsfled, If 

by(‘)= + l/zQ y - Ilam , z$) = * VzQ, + l/zMp (a, P) 

=Y 
0) = r (j) = qJ’ = 0 

OY i>O for c=*i, 

Substitution of (3.2) Into these equations yields 

z to) = l/aMa 
U.-f,0 (WV ci!$= l/am; ) za$ = l/zQ a (4). B lo) = QQ, Y.1 

x$)1 = 0 (UP), “y!:) = 0 (3 5) 

%$I + ray.2 - 
' (1) __o 

(Q)? by!,') + by!;) = 0 

(4)9 =o 

i=o 

where P is the Integral part of the quantity 43 + * . 

As will be seen later on, the combination of equations In (3.3) and (3.5) 
Is sufficient to permit the sequential determination of the coefficients of 
the series In (2.1) and (3.2). 

4. Set k - 0 In (3.3). Then, taking Into account (3.4), we obtain 

where 

+ -g 5$- zp$l) + (+- + 1) 6,17) 
PC”) = _ y&-l) 

P 

(4.2) 

(when k = 0, the third and fourth equations In (3.3) are reduced to ldentl- 
ties, in virtue of (3.4)). 

If we consider Rat@, RsW, R,(S) and p@), to be Icnown, then (4.1) com- 

prises a system of six partial differential equations (with respect to 5 
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and II) In the six towns ci,$', o&'. z,l;.'o, 
the membrane portion of the unknown state of 

which the stresses c&, Z,p, Gp are constant 

&‘.“o’, u&y (6) 
, and %,o , defining 

stress, i.e. the portion in 

over the thickness. 

For 8 = 0 and s=l, the quantities R,@), Re@), Ry@) and PCS), may 

be expressed In terms of the components of the external loading by maklng 

use of (3.4), (3.5) and (4.2); Thus, 

R,(O) = l/zQa (a~), R,(O) = ‘/sQy, P(O) = 0 
(4.3) 

(ap), P(l), = f M 

For 8>1, the quantities R,'"', RbCS', RItS) and PC”’ will also be known 
(If all lower order approximations have been constructed), but the expres- 

sions for these quantities will Include, in addition to the components of 

external loading, those coefficients In the series expansions (2.1) whose 

indices are less than 8 . 

The quantities a,,?', zab8,)1, op,:S', Us,?', UP,? and %, 1 (') in the series 

expansions (2.1) and (312) define the pure moment portion of the state of 

stress, i.e. the part in which the stresses c&, ?Cap and 6p have a linear 

antisymmetric variation over the shell thlclmess. To determine these quan- 

titles,- it Is sufficient to set k I 1 in the last four equations of (3.3). 

We obtain 

(8) 
$ UY,l =- V(&, f-l' + q?,,y)) + Qy, f2' 

+ 2(1 + Y)z,(,,-:) 

(8’ 
=Qa 1 3 - Yq,, f’ + + (Qic, t-l) - q3,o (8-l)) _ yoy, Y-1) - e Q,, (s,-2) (&3) 

a 

(4.4) 

Whence, considering all lower order approximations up to and Including 

the (a-1)th to be known, differentiation and algebraic maniptiatiOn yield 

the expressions for u~,'~', u,,(s;)) Us,, aci,?', Ga.';' and ~,ds'~ . For k I 1, 

the first two equations In (3.3) yield (also by means of simple operations) 

z$& zg$ and Q-L';), which are needed for the determination of Rats’, RB@), 
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5. We will aonflne ourselves to the first two term ln the series expan- 

sions (2.1). Then, ln aonformanae with (3.2), the formulas for the atreasea 

and displacementa are 

The quantities ln the right-hand eldea of these equations may be deter- 

mined by meana of the equations obtained in Section 4. An approxlmatemetid 

for the analgale of shells Is thus aonstruated. The results obtained will 

now be expressed ln terme of alaaslaal ah&theory. 

The stress resultants, moment resultants and dlaplaaement components for 

the middle surfaae may be written as 

(5.2) 

Here LOW'8 notation has been used [7]. Substituting (5.1) intO (5.2), 

we obtain 

Tl(i) = ~&Ra,,‘z cap), S1 = 2Rz$!,, ,Y2 = -2Rz,;!, 

u(i) = Rh-lu,,$ (W, w(i) = _ Rh-$,$,) 
(i=O, 1) (5*3) 
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Substitution af (5.3) Into (4.1) glelde zeroth and first order approxlma- 

tlon equations ln term of the tangential stress resultant8 and displacements 

(these quantities are designated, respectively, by the lndlces 0 and 1 ) . 

Utlllzlng these results and returning from nondimensional to dimensional 

qWntltle8 by means of Formulas (l.;), we obtain 

(in all formulas t - 0, 1) 

T (i) 
1- VT$' = 2EhQ’ + 2P@’ T (i) - VTp = 2E@’ + 2P’ 

2 (1 + Y) Lp = - 2;1 + :, sz@) = yKl”’ (5.6) 

81 
(i) ~~.!!$!._+~~2!&!_~~i~-~, Ez(i) = -... ; !$_+G!?~ci~_E!!$ 

a(i) - A a Ji’ -+L&~ 
B a;: A 

(5.7) 

k?,(O), Rp(O), R,(O) and PC’) are given by Formulas (4.3). From these It 

follow8 that, when t = 0 , Equations (5.5) will colnolde with the equations 

of equilibrium of membrane theory If, In the latter, the componenta of the 

exterior surface loading are taken, respectively, a8 

Qay QP~ - QY (5.8) 

When Pci) = 0, (5.6) and (5.7) with i = 0, coincide with stress-strain 

relations for the tangential stress resultants. 

When t-1, the meanlng of Equations (5.5) to (5.7) Is the same as 

before, but the components of the exterior surface loading are now given, 

respeotlvely, ln accordance with (4.3) as 

In addition, when i = 1, the quantity PC’) does not become zero ln the 

first two stress-strain relations in (5.6). 

Relations (4.10, which are used ln the determination of those quantltles 

ln (5.1) whloh bear the additional MeX 1, also have a simple Interpretation. 

By setting ES I 1 ln the first two equations in (4.4) and taking lntoacc~lnt 
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(5.31, we obtain 

u,, F’ = - $ (T,(O) + Tzto'), 

The remalnlng two equations 

and (l.l), be transformed into 

In (4.4) my, with the aid of [5.4), (5.3) 
the form 

Here, x1, Q and 7 pertain to the curvatures which, as in c31, are 
given by 

x1=-+~-L_ailr2 
AB af3 Cd) 

(5.11) 

6. The classical equations of the shell theory contain, In addition to 
terms of the order hrp, terms of order h+‘, I.e. the equations are formally 

(but only formally) constructed with an accuracy of order h+'. In order to 

bring into correspondence the accuracy of classical theory and that of the 

currently proposed method and therefrom to proceed to a comparison of results, 

use will be made of an Iterative method of Integrating the equations of shell 

theory which will enable us to check on the attalnment of the necessary accu- 

racy. 

Neglect In all equations of equilibrium of classical shell theory the 

terms representing moments of thler derivatives. Then, making use of the 

last two formulas ln‘(1.7), the fourth and fifth equilibrium equations 

yield (*) 
N, = -hMp, N,=-hM, (6.4) 

Utilizing these formulas to eliminate the transverse stress resultants 

from the first three equations of equilibrium, we obtain the equilibrium 

equations of classical membrane theory In which the actual components of 

exterior surface loading x , y and Z are replaced by the effective com- 

ponents 

MB X' .= X + h R (a~), 
a 

w%) + &w] (6.2) 

*) The well known equations of shell theory are not written out here. The 
results given below may be proved by utilizing the equilibrium equations 
(12.61, part I of monograph C33. The fifth of these equations has to be 
corrected by char@ng the Sign ln front of F from minus to plus. 
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The remaining components of classical theory can be made to coincide with 

relations (5.6), (5.7), (5.10) and (5.11) by eliminating the superscripts in 

the latter and setting i'(i) = 0. 

The equations of the shell theory which have been simplified by neglect- 
ing moments may be integrated step by step in the following manner: the first, 

second, third and sixth equations of equlllt~%um yield the tangential stress 

resultants (n, r,, sl, s,) ; the tangential strain components cl, cat and 

u) may be determined by means of (5.6); the displacement components U, v 

and UI may then be determined from (5.7); the curvature components ~1, no, 

T are obtained from (5.11); the momenta Qr, a,, flX and ,yp are determlned 

from (5.10), and the transverse stress resultants Nl and N1 are found from 

Formulas (6.1). The above method represents a modification (by taking Into 

account moment loads on the surface) of the method described in chapter 5 of 

monograPh c 31. It can be considered as an approximation obtained by an 

Iterative procedure. A second approximation can be constructed by Including 

ln the equilibrium equations the quantities Q,, Ga, HI and H* obtained from 

the lnltlal. approximation, etc. However, ln order to obtain results with 

the required accuracy, I.e. to an accuracy of the order of h+ compared with 

unity, the Mtlal approximation Is sufficient. 

Note The described iterative method Is not always applloable. It 
can not be uied, for example, to find edge effects or the state of stress ln 
shells whose efiective length Is sufficiently great. !Fhe exolualon of such 
cases from consideration and the pertinent limltations have been discussed 
In. the introduction. 

The COIDPlett! state of stress construated In this manner will consist of 

a membrane state of stress produced by tangential forces and a pure moment 

state of stress produces by moments. The first of these correepondsti that 

portion of the state of stress discussed ln Section 5 which is produced by 
the stresses 

R h%,,$' + ~a,(:), R h-lz,ff),, + q&,, R h-%~~,~;) + ap,(‘; (6.3) 

The components of the surface loading which produce the state of stress 

(6.3) may be obtained by comblnlng the components of (5.8) with the compo- 

nents of (5.9) multiplied by h+. With the aid of (1.7), it is easily shown 

that this procedure yields components with the same accuracy as (6.2). This 

means that the membrane portions of the states of stress under discussion 

differ from the state of stress In (6.3) only to the extent that In obtaln- 

lng (6.3) the dtress-strain relations (5.6) are not homogeneous (in terms of 

powers of h+ compared to unity). Complete coincidence Is obtained If, in 

the classical theory, the stress-strain relations for ipr and l'. are taken 

In the form 

T, - VT% = 2Eh~ f vhm, T, - vT1 = 2Ekz + vhm (6.4) 

TNS correction corresponds to taking into account compression of the 

shell ln the nors@ direction. 
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Note . 
setting 

The nonhomogenelty In relations (6.4) is easily ellmlnated by 

vh 
Tl=TP-i- cvrn, Ts=T;+m - 

Then the formulas ln (6.2) me replaced by the following 

hv am MFJ hv am 
x”=X’+ A(l--y)z=X+h R,+-- 

A(i--V) aa (W 

z”=Z-$[&W$J +$Wf.,]+&-($+$-)m 
a. 

The pure moment part of the state of stress obtained here corresponds to 

the state of stress ( soa, 1(O), <~,~,~(o), ?$a, 1(O)) ln Section 5. Coincidence 

within the bounds of the assumed accuracy will be complete If the relations 

for the moments are taken In the form (5.10). 

From the preceding comparison It follows that, 3x1 order to solve the prob- 

lem formulated ln the introduction, we may propose a corrected ClaSsICal 

theory the error in which, for t = 0 , will be of the order h,+,* ln comparl- 

son with unity. For this, It Is necessary: first, to determlne the compo- 

nents x, Y and Z of the exterior surface loading by Formulas (1.7), 
retaining only the first two terms In the right-hand sides, I.e. taking Into 

account changes of area scale In going from the exterior or Interior surf&e 

to the middle surface; second, Instead of the actual components of the sur- 

face loading, to use the effective components I’, Y’ and Z’, I.e. to take 

Into account moments arising from the transferenae of exterior tangential 

forces to the middle surface; thlrd, to make use of the nonhomogeneous rela- 

tions (6.4) or replace I’, Y’ and 2’ by effective components X”, Y” and 

Z’ , I.e. to take into account. compression arising from the transfer of 

exterior normal forces to the middle surface; fourth, to take stress-strain 

relations for the moment resultants In the form (5.10). 

7. We will now proceed to study the Influence of the index of variation 

on the errors in determining the state of stress based on classical theory. 

We will assume, In (2.2), that 0 < t < + (here, as In other asymptotic 

studies, the case where t > *la7 must be examined separately), and for defl- 

nlteness, assume 114 < t < f/3 * This leads to the following Inequalities 

~<P<9--P<~P<q--P<<<<+P<+---P (?.I) 
which will be used In proving subsequent assertions. 

Finally, assume tpt the quantities In the right hand sides of (1.6) are 

Independent of h+ and that Oy Is not Identically zero. Then we must set 

p - 0 in the series expansions (2.1), and, in order to satisfy the boundary 

cqnditlons (1.6), It Is necessary that 

QY (‘) = f l/aQr(8) - l/&), To?) = f ‘la QN(” + f/&_fg@) (a~) for c= f 1 
where (7 -2) 

Qy(” = QY, do) = m, QJP) = Qa (a~), ML(P) = M, (a~) (7.3) 
Qy(‘)=m% 0 for s#Oo,, QOL(8)=Mp(g)=QP(g)=&@)=O ror.s.#p 
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The state of stress satisfying all the stated conditions will be referred 

to a8 the state of stress (t> 0, QY +O). 

If, In (2.2), the Index s satisfies the Inequality s < (I - 2P , then 
upon taking Into account (7.1) and eliminating terms with negative Indices 
It will be found that, when s I 0, P = 0 and p - 1, (2.2) will contain 
only terms with Indices (e) and (-a - P 
the form of the solution of Equations t 

. This mean6 that, for s < 4 - 2p, 
2.2) will be the same as that for 

s = 0, P - 0 and q = 1, I.e. it will be given by Equations (3.2) In which 
we set s - 0 . 

In particular, this Implies that 

and hence, by virtue of the boundary condltlons (7.2) and (7.3), 

r (S) = Q g+ () 
aY for s*p, s<q -2p 

If the Index s satisfies the inequalities q - zp < s< dq - ?p, then 
(2.2) will contain only terms with the Indices (s), (s-p), (S - Q -I-- $I), 
(s--q $_P)V (s- 9) and (s--P--V) , 
remain In (2.2) when B I 1, 

namely those and on y those teima which 
Thus the form of the solu- 

tion Is, in this case, given ii y'th0e E&u a: inO(3.2) 41th s - 1 . Q 

When s> 2q - 2p then (2.2) will contain terms which do not appear there 
when p - 0 and q - 1 until s> 2. Correspondingly, we must take s > 1 
In (3.2) for such values of s . 

From the foregoing aiscusslon It follows that If only the first 3 -2p 
approximations of the state of stress (t> 0, Q 
I.e. If we take 8 I 2g - 2p , 

y ~$0) are to be constructed, 
then the solution will be of the form 



To obtain the state of stress (t > 0, QY $0) with errors of the onder 
h-,2q+2P = h*2-2t (h ere an d hereafter the change from X to h+ Is obtained 

by means of (1.2) and (1.3)),all components In (7.4) must be obtained. This 

may be accomplished by using only those terms in (2.2) which are used in the 

computation of the zeroth and first approximations of the state of stress 

when the Index of variation Is zero. This leads to : 

Conclusion 7.1. The classical shell theory with the correc- 

tions formulated at the end of Section 6 enables to determine the state of 
stress (t 50, QY + 0) with errors of the order h,2-2t. 

From (5.3) and (5.41, we can obtain two relations (the first relation Is 
approximate, only the first term having been retained) 

(7.5) 

Which are based on (5.1) and are applicable to states of stress with zero 
kndex of variation. For states of stress 

beplaced by (7.4), so that 
(t > 0, Qy qk 0) , (5.1) must be 

(7 5) 

The formulas for the remaining stress resultants and moment resultants 

may be obtained in a similar manner. 

For t < Jo , the major portion of the stresses will be given by the tan- 
gential stress resultants. These will be of the order of h-l for both 

statesofstress.-For t-0 and t>O, the moments provide corrections 

of the order h+l and h+lmPt, respectively. As one might expeot, the lmpor- 

tanoe of the momentsincreases as t increases. However, It may be seen 

from the second equations ln (7.5) and (7.6) that this behavior Is only due 

to the first tepms in the parentheses. The order of magnitude of the second 

terms does not change as t increases, end consequently, since the terms 
containing tangential deformations ln (5.10) affect only the second terms, 

the proper formulation is obtained. 

Conclusion 7.2. An improper choice of stress-strain relations 

for the moment resultants leads to a state of stress (t > 0, QY + 0) with 

errors of order h+' regardless of the value of the index of variation t . 

Corrections introduced by the proper evaluation of the load components 

and supplementary terms ln (6.4) take effect when e reaches a value such 

that the terms within braces ln (2.2) do not vanish. In view of (7.2) and 

(7.3), the foregoing condition will occur when 8 - q - p . 

C 0 n c 1 u s lo n 7.3 . EITOFS arising from the improper (in terms 

of order h+ compared to unity) evaluation of exterior loading lead to errors 
of the order h9-p = h,l-’ In the determlnatlon of the state of stress 

(t>O, QY+O) (here, the errors ln the final results are greater than 
those In the basic equations). 
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8. In Section 7, it was assumed that QY + 0. When QY =rnG 0,. i.e. 

when the shell Is carrying only tangential surface loads, then, In order to 

satisfy the conditions (1..6), we must set p = -p in (2.1). 

Whereupon (7.2) remains unchanged, and (7.3) Is replaced by 

Qu(O) = 0 m(o) z 0, Qa(') = QGI (UP), Jj' co) = j& (zcp) 

Qy@) = m(S) = Q?) = QP(S) = M,'"' __j@S) = oa for s=j=O 

All considerations of Section 7 apply, but the terms within braces in the 

second &atlon In (2.2) will now become nonsero when e=q-@. ThSS 

means that conclusions 7.1 and 7.2 remain In effect, but conclusion 7.3 muat 

be replaced by the following. 

Conclusion 8.1. Errors arising from the improper (in terms 

of order h, compared to unity) evaluation of exterior loading lead to errors 
of the order 3LqmiP = h,l-2t in the determination of the state of stress 

(t > 0, Q; E 0) 

Thus, in the cases under consideration the largest errors In classical 

theory arise from inaccuracies In operations connected with the applied load, 

I.e. inaccuracies which can be eliminated essentially without any difficulty. 

9. The stress-strain relations obtained here guarantee (when the other 

previously discussed conditions are satisfied) maximum accwracy In the solu- 

tion of a certain blass of' problems described in the introduction. However, 

these relations are not free of formal contradictions. They do not satisfy 

the sixth equation of equlllbrium, and do not satisfy the necessary condi- 

tions for the applloablllty of the reclprooal theorem (cf. [3], Part I, Sec- 

tion 27). These lnoonsistencies may be explained In the fact that the formu- 

lation Is valid only within accuracy of order b* compared to unity. They 

may be eliminated without ahanglng the order of accuracy by Including In the 

stress-strain expressions for the tangential stress resultants terms con- 

talnlng bending strain components. This results In the following formulas: 

(the formulas for T,, 5'9, ffa and G,, being similar, are not shown; In 

addition, a term contalnlng I has been left out in the formula for T1). 

The stress-strain relations (9.1) are different from those obtained by 

Lur'e [ 83 (only the formulas for X1, ya, SI and s, coincide). For the 

class of problems considered here, Formulas (9.1) will certainly yield *greater 

accuracy. For many other problems, both (9.1) and Lur'e's formulas will 

apparently yield adequate accuracy, but this question requires further exa- 

mination. 
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Stress-strain relations (5.6), (5.7), (5.10) and (5.11) correspond to the 

following assumptions. 

1. The stresses (Tar, 'tap,(T~ and the displacement components uarr UQ, u, 

vary across the shell thickness In the following manner: 

& = Qa,o + TCa, 1 (W, GP = w.0 +vaP,r 
(9.2) 

ua= u-n1 (@NJ), uy = -w--_ycp 

2. The stress-strain relations of three-dimensional theory of elasticity 

may be given ln'the form 

Eeaa = csa - wp (a%, Ee,b = 2 (1 + v) GB 
Eeav = 0 w, EeYY = -v (Qa + 9) 

(9.3) 

In determining earn, epp and Q, It Is necessary to retain terms con- 

taining the zeroth and first powers of y , while In the determination of 

eayr ep,y and eyy only terms which are Independent of y must be retained. 

By expressing eua, cap, . . . In terms of 1~, v, W, ylr ys and p In the 

manner described above, then utilizing (9.2) and (9.3) as well as FomnulaS 

(5.2) to determine the stress resultants and moment resultants to an accuracy 

of order hsa, we obtain the homogeneous (for P(*' = 0)’ stress-strain rela- 
tions in Section 5. It can be seen, Incidentally, that these relations are 

distinguished from the relations of Lur'e by the fact that here euY is not 

taken equal to zero. 
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